a2 United States Patent

US009235397B2

(10) Patent No.: US 9,235,397 B2

Song et al. (45) Date of Patent: Jan. 12, 2016
(54) METHOD AND APPARATUS FOR (56) References Cited
INCREASING TASK-EXECUTION SPEED
U.S. PATENT DOCUMENTS
(75) InVeIltOI‘S Hyo-Jung Song5 Seoul (K%)’ Lizy K' 5’768,593 A * 6/1998 Walters et a_l 717/141
John, Austin, TX (US); Ciji Isen, 6,964,039 B2* 11/2005 Heeb .. 717/148
Austin, TX (US); Jung-Pil Choi, Seoul 7,124,407 Bl * 10/2006 Wallman 717/154
(KR) 7,150,012 B2 12/2006 Hill
7,263,693 B2 8/2007 Heeb
. 8,473,718 B2 6/2013 Patel
(73) Assignees: SAMSUNG ELECTRONICS CO., e
LTD., Suwon-Si (KR); THE BOARD (Continued)
OF REGENTS, THE UNIVERSITY
OF TEXAS SYSTEM, Austin, TX (US) FOREIGN PATENT DOCUMENTS
)) o) P 2002-163116 A 6/2002
(*) Notice: Subject to any disclaimer, the term of this Jp 2003-140909 A 5/2003
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1203 days. OTHER PUBLICATIONS
(21) Appl. No.: 12/023,456 Communication dated May 3, 2012 issued by the State Intellectual
. Property Office of the PR China in counterpart Chinese Application
(22) Filed: Jan. 31, 2008 No. 200810098633.5.
(65) Prior Publication Data (Continued)
US 2008/0301653 Al Dec. 4, 2008 Primary Examiner — Wei Zhen
Assistant Examiner — Mohammed Huda
(30) Foreign Application Priority Data (74) Attorney, Agent, or Firm — Parker Highlander PLLC
Jun. 4,2007 (KR) oo, 10-2007-0054661 (57) ABSTRACT
Provided are a method and apparatus for increasing task-
(51) Int.CL execution speed, and, more particularly, a method and appa-
GO6F 9/45 (2006.01) ratus for increasing task-execution speed by compiling code
GO6F 9/38 (2006.01) to bytecodes, and executing native code in units of blocks
GOG6F 9/455 (2006.01) instead of bytecodes, in which a block is a group of a series of
52) U.S.CL ecodes. The apparatus includes a receiving unit whic
(52) bytecodes. The app includ iving unit which
CPC oo GOGF 8/52 (2013.01); GO6F 9/3802 receives a bytecode, a control unit which identifies whether
(2013.01); GO6F 9/45504 (2013.01) the received bytecode is the last bytecode of a block, and a
: : : transmitting unit which transmits an address of a first native
(58) Field of Classification Search itting unit which i ddr fafi i

CPC ... GOG6F 8/52; GOG6F 9/3802; GOGF 9/3808;

GOG6F 9/45504; GOGF 12/0875
USPC ittt 717/148
See application file for complete search history.

code of one or more native codes that correspond to one or
more bytecodes included in the block based on the identifi-
cation result.

12 Claims, 6 Drawing Sheets

200

100 130
INTERPRETATION ACCELERATOR 210
r\J
NATIVE CODE
< NATIVE CODE CACHE
120 A
220
\ 4 [aand
ADDRESS OF NATIVE
PROCESSOR | GODE IN NATIVE CODE BYTECOUE NTERPRETER _3q0
CACHE
B B STATE MACHINE

BYTECODE

110

I 225

LOOKUP TABLE
N—

US 9,235,397 B2
Page 2

References Cited

U.S. PATENT DOCUMENTS

Derrick ..oovovnnen. GOG6F 9/30174
711/118
Ollive et al.ccccovvvvrnenn 703/25
Hill 718/1
Shimura .. 717/100
Owens etal. ... 717/151
Heeb
Chung 717/148
Flanagan et al. ... 717/124
Kamadaet al. 717/141
Patel

FOREIGN PATENT DOCUMENTS

(56)

2002/0156977 Al* 10/2002
2003/0101042 Al* 5/2003
2004/0073904 Al* 4/2004
2004/0210865 Al* 10/2004
2004/0243989 Al* 12/2004
2005/0091650 Al 4/2005
2006/0070049 Al* 3/2006
2006/0129990 Al* 6/2006
2006/0174235 Al* 8/2006
2007/0118724 Al 5/2007
KR 2002-0028814 A

4/2002

KR 10-2004-0063923 A 7/2004

WO 0248821 A2 6/2002
WO 0248821 A3 6/2002
OTHER PUBLICATIONS

Communication dated Nov. 20, 2012, issued by the Japanese Patent
Office in counterpart Japanese Patent Application No. 2008-043716.
Communication, dated Nov. 20, 2013, issued by the Korean Intellec-
tual Property Office in counterpart Korean Patent Application No.
10-2007-0054661.

Communication dated May 12, 2014 issued by the Korean Intellec-
tual Property Office in counterpart Korean Application No. 10-2007-
0054661.

* cited by examiner

U.S. Patent Jan. 12,2016

PRIOR ART

Sheet 1 of 6

FIG. 1

$30

SEARCH LOOKUP TABLE

NO

DOES BYTECQDE EXIST
IN LOOKUP TABLE ?

840

Sa0

STORE NATIVE CODE IN NATIVE CODE CAGHE

US 9,235,397 B2

RECEIVE BYTECODE OR ADDRESS OF BVIECODE [__ S10

A 4

DOES NATIVE CDOE EXIST
1N NATIVE CODE CAGHE

YES

§20

TRANSMIT ADDRESS OF INTERPRETED VERSION TO 2N
PROCESSOR 860

'

EXEGUTE NATIVE GODE

o

U.S. Patent Jan. 12, 2016 Sheet 2 of 6 US 9,235,397 B2

200
100 130
8 INTERPRETATION ACCELERATOR 210
[\/
NATIVE CODE
NATIVE CODE CACHE

T
|

ADDRESS OF NATIVE
PROCESSOR CODE IN NATIVE CODE BYTECODE INTERPRETER r\ajoo
CACHE
< <
STATE MACHINE
>—>
BYTECODE 995
% ¢ I
r)
LOOKUP TABLE
110
\. J/

U.S. Patent Jan. 12, 2016 Sheet 3 of 6 US 9,235,397 B2

;U
320 ;u
INTERPRETER DATA-MANAGEMENT UNIT
310 370
/ [] 340 /
\ 4
RECEIVING UNIT » CONTROL UNIT »| TRANSMITTING UNIT
\ 4 A 4
CODE-IDENTIFICATION LOOKUP-TABLE-SEARCH
UNIT UNIT
350 360

U.S. Patent

Jan. 12, 2016

Sheet 4 of 6

FIG. 4

NATIVE CODE 1

NATIVE CODE 2

NATIVE COOE 3

NATIVE CODE 4

NATIVE CODE 5

NATIVE CODE 6

NATIVE CODE 7

NATIVE CODE 8

NATIVE CODE 9

NATIVE CODE 10

NATIVE CODE 11

NATIVE CODE 12

NATIVE CODE 13

NATIVE CODE 14

NATIVE CODE 15

NATIVE CODE 16

US 9,235,397 B2

FIRST BLOCK 7_ 410

SECOND BLOCK™_ 40g

THIRD BLOCK “™_ 439

U.S. Patent Jan. 12, 2016 Sheet 5 of 6 US 9,235,397 B2

FIG. §

910

FIRST BLOCK

SECOND BLOCK 530

THIRD BLOCK

002

090

FIFTH BLOCK 070
560
~5 SEVENTH BLOCK
FOURTH BLOCK SIXTH BLOCK

U.S. Patent Jan. 12, 2016 Sheet 6 of 6 US 9,235,397 B2

FIG. 6

RECEVE BYTECUDE OR ADUNESS OF BYTEQUE \43615

S NATIVE SOE £XIF
£ ww CRONE 2 5528
¥s
SERRUN LOUKUP TABLE 5850
$556
{\.../
S888

RTERPREY BYTRCORE

TS BYTEC0DE B
" 3§ 100KES5 TASLE 9

i

h 4

STORE HATWE COBE I RATIVE CUNE GARKE
S084
R
£ i ¥
REDHIVE NEXT BYTECUDE OR AGORESR OF MEXT TRANSMIT ADORESS OF HARVE DBDE YD |y
BYTECODE PROCESSOR -SG50
ERECHTE $ATIVE CORE N\ s70

k A

(e)

US 9,235,397 B2

1
METHOD AND APPARATUS FOR
INCREASING TASK-EXECUTION SPEED

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from Korean Patent Appli-
cation No. 10-2007-054661 filed on Jun. 4, 2007 in the
Korean Intellectual Property Office, the disclosure of which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Apparatuses and methods consistent with the present
invention relate to increasing task-execution speed, and, more
particularly, to increasing task-execution speed by compiling
code to bytecode, and executing native code in units of blocks
instead of bytecode, in which a block is a group of a series of
bytecodes.

2. Description of the Related Art

Java is an object-oriented programming language that can
be executed on any platform. A platform refers to hardware on
which a program or software such as an operating system
(OS) runs. Code written in Java is compiled into bytecode by
a Java compiler, and the bytecode is executed by a Java virtual
machine ported on various platforms.

Bytecode is a command language, such as a machine lan-
guage, and is not dependent on a particular processor. Byte-
code is executed by a virtual machine. That is, the virtual
machine interprets the bytecode into corresponding native
code. Since the bytecode is not limited to a particular archi-
tecture, it can run on any architecture having the Java virtual
machine. Accordingly, a binary bytecode file can be executed
in a platform-independent manner.

However, a major drawback of Java is execution speed. A
program compiled on a particular architecture runs faster than
bytecode because it runs directly on hardware without requir-
ing a processor architecture to be emulated on another pro-
cessor architecture.

With bytecode, the Java virtual machine running on a pro-
cessor has to convert the bytecode into native code before
starting its operation.

Various hardware or software technologies are being tried
in order to increase the execution speed of the bytecode. For
example, software technology such as a just-in-time (JIT)
compiler or a hotspot JIT compiler, which are faster than the
JIT compiler, have been used to increase the speed of the Java
virtual machine. The JIT compiler accompanies compile
overhead and memory overhead when generating a native
processor command.

As hardware technologies for increasing the interpretation
speed of bytecode, a technology of modifying processor
architecture and a technology of using an external processor
are being tried.

FIG. 1 is a flowchart illustrating a conventional method of
converting bytecode into native code and executing the native
code.

Referring to FIG. 1, a software routine running on a central
processing unit (CPU) loads bytecode, and a processor trans-
mits the bytecode or an address of the bytecode to a Java
interpretation accelerator (S10). When the address of the
bytecode is transmitted, the bytecode located at the address
may be called.

Then, the bytecode is input to a state machine included in
abytecode interpreter, and the state machine searches anative
code cache for a cached and interpreted version of the byte-

10

15

20

25

30

35

40

45

50

55

60

65

2

code, that is, native code (S20). If the native code is found in
the native code cache, its address is transmitted to the proces-
sor (S60). Accordingly, native code is sequentially executed
from the native code located at the address (S70).

If the native code is not found in the native code cache, the
state machine searches a bytecode-interpretation lookup table
(S30). The bytecode-interpretation lookup table denotes
information stored in order to map or convert bytecode. It is
determined whether the bytecode exists in the lookup table
(S40). If the bytecode does not exist, the process ends. If the
bytecode does exist in the lookup table, an interpreted version
of the native code is copied to the native code cache (S50).
The processor receives an address of the native code in the
native code cache (S60), and executes commands corre-
sponding to native code, starting with a command corre-
sponding to the native code located at the address (S70).

After native code for the finally interpreted bytecode is
executed, a control right is transferred to a software or hard-
ware routine responsible for resuming the interpretation of
the next bytecode. Such a handoff is performed in the final
stage of executing the interpreted bytecode.

However, since the handoff causes a performance loss due
to the extra overhead, an invention that can enhance system
performance by reducing the frequency of handoffs is
needed.

SUMMARY OF THE INVENTION

Exemplary embodiments of the present invention over-
come the above disadvantages and other disadvantages not
described above. Also, the present invention is not required to
overcome the disadvantages described above, and an exem-
plary embodiment of the present invention may not overcome
any of the problems described above. The present invention is
to provide an apparatus and method for increasing task-ex-
ecution speed by compiling code to bytecodes and executing
native code in units of blocks, in which a block is a group of
a series of bytecodes.

According to an aspect of the present invention, there is
provided an apparatus for increasing task-execution speed.
The apparatus includes a receiving unit which receives a
bytecode, a control unit which identifies whether the received
bytecode is a last bytecode of a block, and a transmitting unit
which transmits an address of a first native code from one or
more native codes, which correspond to one or more byte-
codes included in the block, based on the identification result.

According to another aspect of the present invention, there
is provided a method of increasing task-execution speed. The
method includes receiving a bytecode, identifying whether
the received bytecode is a last bytecode of a block, and trans-
mitting an address of a first native code from one or more
native codes, which correspond to one or more bytecodes
included in the block, based on the identification result.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of the present
invention will become more apparent by describing in detail
exemplary embodiments thereof with reference to the
attached drawings, in which:

FIG. 1 is a flowchart illustrating a conventional method of
converting a bytecode into a native code and executing the
native code;

FIG. 2 is a block diagram of an apparatus for increasing
task-execution speed according to an exemplary embodiment
of the present invention;

US 9,235,397 B2

3

FIG. 3 is a detailed block diagram of a state machine
included in the apparatus of FIG. 2;

FIG. 4 is a diagram illustrating native code grouped in units
of blocks according to an exemplary embodiment of the
present invention;

FIG. 5 is a diagram illustrating blocks formed based on
branch commands according to an exemplary embodiment of
the present invention; and

FIG. 6 is a flowchart illustrating a method of increasing
task-execution speed according to an exemplary embodiment
of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The various aspects and features of the present invention
and methods of accomplishing the same may be understood
more readily by reference to the following detailed descrip-
tion of exemplary preferred embodiments and the accompa-
nying drawings. The present invention may, however, be
embodied in many different forms and should not be con-
strued as being limited to the exemplary embodiments set
forth herein. Rather, these exemplary embodiments are pro-
vided so that this disclosure will be thorough and complete
and will fully convey the concept of the present invention to
those skilled in the art, and the present invention is defined by
the appended claims. Like reference numerals refer to like
elements throughout the specification.

Hereinafter, exemplary embodiments of the present inven-
tion will be described in detail with reference to the accom-
panying drawings.

FIG. 2 is a block diagram of an apparatus for increasing
task-execution speed according to an exemplary embodiment
of the present invention. Referring to FIG. 2, the apparatus
(hereinafter, referred to as an “acceleration apparatus™)
includes a processor 100 and an interpretation accelerator
200. The interpretation accelerator 200 includes a native code
cache 210 and a bytecode interpreter 220.

The processor 100 transmits bytecode 110 to the interpre-
tation accelerator 200, receives native code 130 correspond-
ing to the transmitted bytecode 110, and executes commands
corresponding to the received native code 130. Bytecode 110
is a command language, such as a machine language into
which programming codes are compiled, and include plat-
form-independent code.

The processor 100 may transmit addresses of the bytecodes
110, instead of the bytecodes 110, to the interpretation accel-
erator 200. In this case, the processor 100 may receive the
native code 130 corresponding to the bytecodes 110, and
execute commands corresponding to the received native code
130.

In order to execute the commands corresponding to the
received native code 130, the processor 100 receives an
address 120 of a native code from the interpretation accelera-
tor 200, and executes the commands corresponding to the
native code 130, which exist at addresses after the received
address 120, starting with a command corresponding to the
native code at the received address 120. That is, the processor
100 does not transmit a bytecode, and receives a native code
corresponding to the bytecode. Instead, the processor 100
transmits a plurality of bytecodes, and executes a plurality of
commands corresponding to a plurality of native codes
received.

The native code 130, which are to be executed by the
processor 100, may exist in units of predetermined blocks. A
lastnative code of ablock may include information indicating
that it is located at the end of the block. Accordingly, the

15

25

30

40

45

55

4

processor 100 executes a plurality of commands correspond-
ing to a series of native codes included in a block. After
executing a command corresponding to the last native code of
the block, the processor 100 receives an address of a first
native code in a next block and executes commands for the
next block.

The interpretation accelerator 200 receives the bytecodes
110 from the processor 100, and transmits an address (i.e., the
address 120) of a first native code in a block, which includes
the received bytecodes 110, to the processor 100.

The interpretation accelerator 200 may receive the
addresses of the bytecodes 110, instead of the bytecodes 110,
from the processor 100. In this case, the interpretation accel-
erator 200 may transmit the address 120 of the native code
using the bytecodes 110 located at the received addresses.

In order to receive the bytecodes 110 and transmit the
native code 130, the interpretation accelerator 200 may
include a bytecode interpreter 220. The bytecode interpreter
220 includes a state machine 300 and a lookup table 225.

The state machine 300 identifies whether each of the byte-
codes 110 received from the processor 100 is a last bytecode
of the block, and transmits the address 120 of the native code
based on the identification result.

That s, if each of the received bytecodes 110 is not the last
bytecode of the block, the state machine 300 stores a native
code corresponding to each of the bytecodes 110 in a native
code cache 210. If each of the received bytecodes 110 is the
last bytecode of the block, the state machine 300 transmits the
address 120 of the native code, which corresponds to a first
bytecode of the block, to the processor 100. The state machine
300 will be described in detail later with reference to FIG. 3.

The acceleration apparatus according to the present
embodiment compiles a programming code into a bytecode,
interprets the bytecode into a corresponding native code, and
executes the native code. The programming code may include
a Java code, which, however, does not indicate that the accel-
eration apparatus of the present embodiment executes a task
according to the Java code only. It should be understood that
the acceleration apparatus operates in all environments where
compiling and interpretation are performed in real time.

FIG. 3 is a detailed block diagram of the state machine 300
included in the acceleration apparatus of FIG. 2. The state
machine 300 includes a receiving unit 310, an interpreter 320,
a data-management unit 330, a control unit 340, a code-
identification unit 350, a lookup-table-search unit 360, and a
transmitting unit 370.

The receiving unit 310 receives a bytecode from the pro-
cessor 100. If the processor 100 transmits an address of the
bytecode, the receiving unit 310 may receive the address of
the bytecode.

The code-identification unit 350 identifies whether a native
code corresponding to the received bytecode exists in the
native code cache 210. The native code cache 210 is a storage
space, which can be read and written to at high speed, that
temporarily stores native code. The code-identification unit
350 identifies whether the native code corresponding to the
received bytecode is stored in the native code cache 210.

The look-up table searchunit 360 searches the lookup table
225 to identify whether the received bytecode exists in the
lookup table 225. The lookup table 225 specifies correspond-
ing relationships between bytecode and native code. By
searching the lookup table 225, the lookup-table-search unit
360 can identify whether and where a native code correspond-
ing to a particular bytecode exists.

The interpreter 320 interprets the received bytecode into a
native code. That is, if the code-identification unit 350 deter-
mines that the native code corresponding to the received

US 9,235,397 B2

5

bytecode is not stored in the native code cache 210 and if the
search result of the lookup-table-search unit 360 indicates
that the native code corresponding to the received bytecode
does not exist, the interpreter 320 analyzes the received byte-
code and generates a native code.

The data-management unit 330 stores native code in the
native code cache 210. That is, when the lookup-table-search
unit 360 identifies the location of the native code correspond-
ing to the received bytecode, the data-management unit 330
stores the native code in the native code cache 210. Alterna-
tively, when the interpreter 320 generates native code, the
data-management unit 330 stores the generated native code in
the native code cache 210.

The data-management unit 330 stores native code in
response to control commands received from the control unit
340. The data-management unit 330 may sequentially store
the native code in the storage space of the native code cache
210 according to the order in which the control commands are
received. For example, a current native code is stored at an
address next to that of a previously stored native code.

The data-management unit 330 may include an index table
specifying whether and where native code is stored. In this
case, the data-management unit 330 may store a native code
at an arbitrary position of the native code cache 210. Once the
native code is stored, the data-management unit 330 can
update the index table.

The control unit 340 identifies whether the received byte-
code is a last bytecode of a block. A last bytecode of a block
may include information indicating that it is located at the end
of the block. The control unit 340 identifies whether the
received bytecode is the last bytecode of the block using this
information. For example, each bytecode may include a flag
indicating whether it is the last bytecode. If the value of the
flag is zero, the bytecode is not the last bytecode. If the value
of'the flag is one, the bytecode can be set as the last bytecode.

In addition, the control unit 340 controls the overall opera-
tions of the receiving unit 310, the interpreter 320, the data-
management unit 330, the code-identification unit 350, the
lookup-table-search unit 360, and the transmitting unit 370.

Based on the identification result of the control unit 340,
the transmitting unit 370 transmits to the processor 100 an
address of a first native code among one or more native codes
corresponding to one or more bytecodes in the block.

When receiving the address of the first native code, the
processor 100 executes commands corresponding to all the
native code of the block, starting with a command corre-
sponding to the first native code located at the received
address. The processor 100 may also identify the sequence of
native codes to be executed and the position of the last native
code with reference to the index table.

FIG. 4 is a diagram illustrating native code grouped in units
of blocks according to an exemplary embodiment of the
present invention.

As described above, native code is stored in the native code
cache 210. The native code may be stored in units of blocks as
illustrated in F1G. 4. That is, one or more native codes may be
included in each of one or more blocks, that is, first through
third blocks 410 through 430.

When the receiving unit 310 receives a bytecode, the code-
identification unit 350 and the lookup-table-search unit 360
identify whether a native code corresponding to the received
bytecode exists. The interpreter 320 generates a native code
based on the identification result, and the data-management
unit 330 stores a native code, which is stored in a separate
storage medium, or the generated native code in the native
code cache 210 in units of blocks.

10

15

20

25

30

35

40

45

50

55

60

65

6

If the control unit 340 identifies that the received bytecode
is a last bytecode of the first, second or third block 410,420 or
430, it extracts an address of a first native code 411, 421 or 431
of the first, second or third block 410, 420 or 430, and trans-
mits the extracted address to the processor 100 through the
transmitting unit 370. Here, an address of a native code
denotes an address in the native code cache 210. The proces-
sor 100 that receives the extracted address sequentially
extracts native codes, starting with the first native code 411,
421 or 431 located at the received address, and executes
commands corresponding to the extracted native code. This
operation continues until a command corresponding to the
last native code of the first, second or third block 410, 420 or
430 is executed. When tasks according to all native code of
the first, second or third block 410, 420 or 430 are completed,
the receiving unit 310 receives a next bytecode.

FIG. 5 is a diagram illustrating blocks formed based on
branch commands according to an exemplary embodiment of
the present invention.

In the present invention, a block may be understood as a
group of commands. That is, a series of commands included
in a block are sequentially executed. Therefore, it is desirable
to have a greater number of native codes in a block in order to
reduce the handoff of compiling and interpretation. In fact,
the size of a block may be determined by the position of a
branch command.

For example, when a branch command such as an “if”
command is included in a block, a subsequent task may be
determined by the state of process at runtime. Therefore, the
subsequent task is inevitably included in another block.

Ultimately, a command corresponding to a last native code
of'ablock may be abranch command, and a block may branch
into two or more blocks.

Referring to FIG. 5, since a command corresponding to a
last native code of a first block 510 is a branch command, the
first block 510 branches into second and third blocks 520 and
530 at a diverging point 501.

In addition, since commands respectively corresponding to
last native code of the second and third blocks 520 and 530 are
branch commands, the second and third blocks 520 and 530
branch into fourth and fifth blocks 540 and 550 and sixth an
seventh blocks 560 and 570 at diverging points 502 and 503,
respectively.

As described above, the position of a diverging point is
determined by the position of a branch command. However,
the diverging point may also be located at an arbitrary posi-
tion according to a setting.

FIG. 6 is a flowchart illustrating a method of increasing
task-execution speed according to an exemplary embodiment
of the present invention.

Inorderto increase task-execution speed, the receiving unit
310 of the state machine 300 receives a bytecode or an address
of'the bytecode from the processor 100 (S610).

The code-identification unit 350 identifies whether a native
code corresponding to the received bytecode is stored in the
native code cache 210 (S620). When the address of the byte-
code is identified, the code-identification unit 350 may call
the bytecode located at the address and identify whether the
native code corresponding to the bytecode is stored in the
native code cache 210 by using the called bytecode.

When the native code corresponding to the received byte-
code is stored in the native code cache 210, the transmitting
unit 370 transmits an address of the native code in the native
code cache 210 to the processor 100 (S690).

After receiving the address of the native code, the proces-
sor 100 executes commands corresponding to all native code

US 9,235,397 B2

7

of a corresponding block, starting with a command that cor-
responds to the native code located at the received address
(S700).

When the native code corresponding to the received byte-
code is not stored in the native code cache 210, the lookup-
table-search unit 360 searches the lookup table 225 (S630)
and identifies whether the received bytecode exists in the
lookup table 225 (S640).

When the received bytecode is found in the lookup table
225, the control unit 340 identifies whether the received byte-
code is a last bytecode of the block (S660).

When the received bytecode is not found in the lookup
table 225, a control right is transferred to the interpreter 320,
and the interpreter 320 generates a native code corresponding
to the received bytecode (S650). Then, the control unit 340
identifies whether the received bytecode is the last bytecode
of the block (5660).

If the received bytecode is the last bytecode of the block,
the transmitting unit 370 transmits an address of the native
code corresponding to the received bytecode to the processor
100 (S690).

If the received bytecode is not the last bytecode of the
block, the data-management unit 330 stores the native code
corresponding to the received bytecode in the native code
cache 210 (S670). Here, the data-management unit 330 may
update an index table specifying whether and where the
native code is stored.

After the native code is stored in the native code cache 210
and the index table is updated, the receiving unit 310 receives
a next bytecode or an address of the next bytecode (S680).
Then, the operations of identifying whether a native code
corresponding to the received bytecode exists and identifying
the location of the received bytecode in a corresponding block
are repeatedly performed.

As described above, an apparatus and method for increas-
ing task-execution speed according to the present invention
can increase task-execution speed by compiling code to byte-
code, and executing native code in units of blocks, wherein a
block is a group of a series of bytecodes.

While the present invention has been particularly shown
and described with reference to exemplary embodiments
thereof, it will be understood by those of ordinary skill in the
art that various changes may be made in the form and details
without departing from the spirit and scope of the present
invention as defined by the following claims. The exemplary
embodiments should be considered in a descriptive sense
only and are not for purposes of limitation.

What is claimed is:

1. An apparatus for increasing task-execution speed, the
apparatus comprising:

a receiver which receives a bytecode among a plurality of

bytecodes included in a block;

a controller which determines whether the received byte-
code is a last bytecode of the block;

a transmitter which transmits an address of a first native
code from one or more native codes that correspond to
one or more bytecodes included in the block if the
received bytecode is determined to be the last bytecode
of the block; and

a processor which receives the address of the first native
code that corresponds to a first bytecode of the plurality
of bytecodes, and executes a plurality of commands
corresponding to a series of native codes until executing
a command corresponding to a last native code of the
series of native codes is completed,

20

25

30

40

45

50

8

wherein the transmitter does not transmit the first native
code if the received bytecode is determined to not be the
last bytecode of the block, and

wherein bytecodes are added to the block until a command

corresponding to a last native code of the block includes
a branch command.

2. The apparatus of claim 1, wherein the block comprises
bytecodes for commands that exist between branch com-
mands.

3. The apparatus of claim 1, further comprising a data-
management unit which stores a native code that corresponds
to the received bytecode in a native code cache based on the
result of the determining.

4. The apparatus of claim 3, wherein the transmitter trans-
mits an address of a native code that corresponds to a first
bytecode of the block of the native codes stored in the native
code cache.

5. The apparatus of claim 1, further comprising an inter-
preter which generates a native code corresponding to the
received bytecode based on whether the native code corre-
sponding to the received bytecode exists.

6. The apparatus of claim 1, wherein the bytecode com-
prises Java code compiled by a Java compiler.

7. A method of increasing task-execution speed, the
method comprising:

receiving a bytecode among a plurality of bytecodes

included in a block;

identifying whether the received bytecode is a last byte-

code of the block; and

transmitting, by a transmitting unit, an address of a first

native code from one or more native codes that corre-
spond to one or more bytecodes included in the block if
the received bytecode is determined to be the last byte-
code of the block;

wherein the transmitting unit does not transmit the first

native code if the received bytecode is determined to not
be the last bytecode of the block,
wherein bytecodes are added to the block until a command
corresponding to a last native code of the block includes
a branch command, and

wherein the method further comprises receiving the
address of the first native code that corresponds to a first
bytecode of the plurality of bytecodes, and executing a
plurality of commands corresponding to a series of
native codes until executing a command corresponding
to a last native code of the series of native codes is
completed.

8. The method of claim 7, wherein the block comprises
bytecodes of one or more commands that exist between
branch commands.

9. The method of claim 7, further comprising storing a
native code that corresponds to the received bytecode in a
native code cache based on the identification result.

10. The method of claim 9, wherein the transmitting of the
address of the first native code comprises transmitting an
address of a native code that corresponds to a first bytecode of
the block of the native code stored in the native code cache.

11. The method of claim 7, further comprising generating
a native code corresponding to the received bytecode based
on whether the native code corresponding to the received
bytecode exists.

12. The method of claim 7, wherein the bytecode com-
prises Java code compiled by a Java compiler.

#* #* #* #* #*

